Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian-Kai Cheng, Zhao-Ji Li, Yao Kang, Yu-Biao Chen, Ye-Yan Qin, Yi-Hang Wen and Yuan-Gen Yao*

The State Key Laboratory of Structural
Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: yyg@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.032$
$w R$ factor $=0.078$
Data-to-parameter ratio $=14.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Dichloro[2,2'-hydroxy(ethoxy)methylenedipyridine $\left.-\kappa^{2} N, N^{\prime}\right]$ palladium(II)

In the title complex, $\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$, the central $\mathrm{Pd}^{\text {II }}$ atom is bonded to two pyridine N atoms and two terminal Cl atoms. The coordination geometry of the Pd atom is square planar with a slight tetrahedral distortion. The two $\mathrm{Pd}-\mathrm{N}$ distances are 2.029 (3) and 2.057 (3) \AA, and the $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angle is $86.56(13)^{\circ}$. The $\mathrm{Pd}-\mathrm{Cl}$ distances are 2.2929 (11) and 2.2959 (11) \AA, and the $\mathrm{Cl}-\mathrm{Pd}-\mathrm{Cl}$ angle is $90.84(5)^{\circ}$.

Comment

The condensation products formed when metal complexes of di-2-pyridyl ketone (dpk) are reacted with some nucleophiles, including water, have been reported previously (Annibale et al., 1981; Sommerer et al., 1997). Herein we report the structure of the title compound, (I), which is formed via the reaction of dpk with PdCl_{2} in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$. In (I), the $\mathrm{N} 1-\mathrm{Pd}-\mathrm{N} 2$ angle is narrower than the ideal value (for square-planar coordination) of 90° [86.56(13) ${ }^{\circ}$. This angle can be compared with corresponding angles in $[\mathrm{Pd}\{\mathrm{dpk}-$ $\left.\left.(\mathrm{OH})_{2}\right\}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Pd}\left(2,2^{\prime}\right.\right.$-dipyridyl) $] \mathrm{Cl}_{2}$, where the $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angles are 87.1 (2) (Annibale et al., 1981) and 80.5 (4) ${ }^{\circ}$ (Beer et al., 1997), respectively. The N2-Pd-N1 [86.56 (13) ${ }^{\circ}$], N2-$\mathrm{Pd}-\mathrm{Cl} 2\left[90.71(9)^{\circ}\right]$, $\mathrm{N} 1-\mathrm{Pd}-\mathrm{Cl} 1\left[91.91(10)^{\circ}\right]$ and $\mathrm{Cl} 1-$ $\mathrm{Pd}-\mathrm{Cl} 2\left[90.84(5)^{\circ}\right]$ angles approach the ideal value of 90°; this indicates that the coordination geometry of the Pd atom is square planar with a slight tetrahedral distortion.

Experimental

For the preparation of compound (I), p-phenylenediamine was combined with dpk in a $1: 2$ stoichiometric ratio in $\mathrm{CH}_{3} \mathrm{CN}$ / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, followed by addition of PdCl_{2}. The resulting solution was filtered and slow evaporation of the clear filtrate gave clear yellow crystals, suitable for X-ray diffraction studies (yield: 0.07 g , 75%). Analysis calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Pd}$: C 38.43, H 3.48, N 6.90%; found: C 38.23, H 3.09, N 6.68\%.

Crystal data

$\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$	$D_{x}=1.801 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=407.56$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / n$	Cell parameters from 3244
$a=9.8277(1) \AA$	reflections
$b=12.0717(3) \AA$	$\theta=2.3-25.0^{\circ}$
$c=12.6885(1) \AA$	$\mu=1.59 \mathrm{~mm}^{-1}$
$\beta=93.162(2)^{\circ}$	$T=293(2) \mathrm{K}$
$V=1503.03(2) \AA^{3}$	Column, yellow
$Z=4$	$0.36 \times 0.22 \times 0.20 \mathrm{~mm}$

Received 31 October 2002 Accepted 20 November 2002 Online 30 November 2002

Figure 1
A view of the structure of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

Data collection

Siemens SMART CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.558, T_{\text {max }}=0.727$
4510 measured reflections

> 2600 independent reflections
> 2270 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.019$
> $\theta_{\max }=25.0^{\circ}$
> $h=-9 \rightarrow 11$
> $k=-9 \rightarrow 14$
> $l=-15 \rightarrow 11$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.078$
$S=1.15$
2600 reflections
181 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Pd1-N2	$2.029(3)$	Pd1-Cl1	$2.2929(11)$
Pd1-N1	$2.057(3)$	Pd1-Cl2	$2.2959(11)$
N2-Pd1-N1	$86.56(13)$	$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 2$	$176.93(10)$
$\mathrm{N} 2-\mathrm{Pd} 1-\mathrm{Cl} 1$	$178.32(10)$	$\mathrm{Cl} 1-\mathrm{Pd} 1-\mathrm{Cl} 2$	$90.84(5)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{Cl} 1$	$91.91(10)$	$\mathrm{C} 11-\mathrm{N} 2-\mathrm{Pd} 1$	$122.0(3)$
$\mathrm{N} 2-\mathrm{Pd} 1-\mathrm{Cl} 2$	$90.71(9)$	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{Pd} 1$	$119.1(3)$

H atoms were included in calculated positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SHELXTL (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

This work was financially supported by the NNSF of China (Nos. 29733090 and 20173063), the State Key Basic Research and Development Plan of China (No. 001CB108906), a Key Project in KIP of CAS (KJCX2-H3) and the NNSF of Fujian Province (No. E0020001).

References

Annibale, G., Canovese, L., Cattalini, L., Natile, G., Biagini-Cingi, M., Manotti-lanfredi, A. \& Tiripicchio, A. (1981). J. Chem. Soc. Dalton Trans. pp. 2280-2287.
Beer, P. D., Fletcher, N. C., Drew, M. G. B. \& Wear, T. J. (1997). Polyhedron, 16, 815-823.
Bruker (1999). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sommerer, S. O., Jircitano, A. J., Westcott, B. L., Abboud, K. A. \& Krause Bauer, J. A. (1997). Acta Cryst. C53, 707-710.

