metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jian-Kai Cheng, Zhao-Ji Li, Yao Kang, Yu-Biao Chen, Ye-Yan Qin, Yi-Hang Wen and Yuan-Gen Yao*

The State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: yyg@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.032 wR factor = 0.078 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dichloro[2,2'-hydroxy(ethoxy)methylenedipyridine- $\kappa^2 N, N'$]palladium(II)

In the title complex, $[PdCl_2(C_{13}H_{14}N_2O_2)]$, the central Pd^{II} atom is bonded to two pyridine N atoms and two terminal Cl atoms. The coordination geometry of the Pd atom is square planar with a slight tetrahedral distortion. The two Pd-N distances are 2.029 (3) and 2.057 (3) Å, and the N-Pd-N angle is 86.56 (13)°. The Pd-Cl distances are 2.2929 (11) and 2.2959 (11) Å, and the Cl-Pd-Cl angle is 90.84 (5)°.

Comment

The condensation products formed when metal complexes of di-2-pyridyl ketone (dpk) are reacted with some nucleophiles, including water, have been reported previously (Annibale et al., 1981; Sommerer et al., 1997). Herein we report the structure of the title compound, (I), which is formed via the reaction of dpk with PdCl₂ in CH₃CN/CH₃CH₂OH. In (I), the N1-Pd-N2 angle is narrower than the ideal value (for square-planar coordination) of 90° [86.56 (13)°]. This angle can be compared with corresponding angles in [Pd{dpk- $(OH)_2$]Cl₂ and [Pd(2,2'-dipyridyl)]Cl₂, where the N-Pd-N angles are 87.1 (2) (Annibale et al., 1981) and 80.5 (4)° (Beer et al., 1997), respectively. The N2-Pd-N1 [86.56 (13)°], N2-Pd-Cl2 [90.71 (9)°], N1-Pd-Cl1 [91.91 (10)°] and Cl1-Pd-Cl2 [90.84 (5)°] angles approach the ideal value of 90°; this indicates that the coordination geometry of the Pd atom is square planar with a slight tetrahedral distortion.

Experimental

For the preparation of compound (I), *p*-phenylenediamine was combined with dpk in a 1:2 stoichiometric ratio in CH₃CN/CH₃CH₂OH, followed by addition of PdCl₂. The resulting solution was filtered and slow evaporation of the clear filtrate gave clear yellow crystals, suitable for X-ray diffraction studies (yield: 0.07 g, 75%). Analysis calculated for C₁₃H₁₄Cl₂N₂O₂Pd: C 38.43, H 3.48, N 6.90%; found: C 38.23, H 3.09, N 6.68%.

Crystal data

$[PdCl_2(C_{13}H_{14}N_2O_2)]$	$D_x = 1.801 \text{ Mg m}^{-3}$		
$M_r = 407.56$	Mo $K\alpha$ radiation		
Monoclinic, $P2_1/n$	Cell parameters from 32		
a = 9.8277 (1) Å	reflections		
b = 12.0717 (3) Å	$\theta = 2.3-25.0^{\circ}$		
c = 12.6885 (1) Å	$\mu = 1.59 \text{ mm}^{-1}$		
$\beta = 93.162 \ (2)^{\circ}$	T = 293 (2) K		
$V = 1503.03 (2) \text{ Å}^3$	Column, yellow		
$Z = 4 \qquad \qquad 0.36 \times 0.22 \times 0.$			

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved 3244

Received 31 October 2002 Accepted 20 November 2002 Online 30 November 2002

Figure 1

A view of the structure of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

Data collection

Siemens SMART CCD	2600 independent reflections
diffractometer	2270 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.019$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 11$
$T_{\min} = 0.558, T_{\max} = 0.727$	$k = -9 \rightarrow 14$
4510 measured reflections	$l = -15 \rightarrow 11$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.078$ S = 1.152600 reflections 181 parameters H-atom parameters constrained
$$\begin{split} w &= 1/[\sigma^2(F_o^{-2}) + (0.0225P)^2 \\ &+ 2.9262P] \\ \text{where } P &= (F_o^{-2} + 2F_c^{-2})/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.32 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.63 \text{ e } \text{\AA}^{-3} \end{split}$$

Table	1
-------	---

Selected geometric parameters (Å, °).

Pd1-N2	2.029 (3)	Pd1-Cl1	2.2929 (11)
Pd1-N1	2.057 (3)	Pd1-Cl2	2.2959 (11)
NO D 11 N1	0(5((12)		17(02(10)
N2-Pd1-N1	86.56 (13)	N1-Pd1-Cl2	176.93 (10)
N2-Pd1-Cl1	178.32 (10)	Cl1-Pd1-Cl2	90.84 (5)
N1-Pd1-Cl1	91.91 (10)	C11-N2-Pd1	122.0 (3)
N2-Pd1-Cl2	90.71 (9)	C7-N2-Pd1	119.1 (3)

H atoms were included in calculated positions and allowed to ride on their parent atoms, with C–H distances in the range 0.93-0.97 Å.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1994); data reduction: *SHELXTL* (Bruker, 1999); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was financially supported by the NNSF of China (Nos. 29733090 and 20173063), the State Key Basic Research and Development Plan of China (No. 001CB108906), a Key Project in KIP of CAS (KJCX2-H3) and the NNSF of Fujian Province (No. E0020001).

References

- Annibale, G., Canovese, L., Cattalini, L., Natile, G., Biagini-Cingi, M., Manotti-lanfredi, A. & Tiripicchio, A. (1981). J. Chem. Soc. Dalton Trans. pp. 2280–2287.
- Beer, P. D., Fletcher, N. C., Drew, M. G. B. & Wear, T. J. (1997). *Polyhedron*, **16**, 815–823.
- Bruker (1999). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sommerer, S. O., Jircitano, A. J., Westcott, B. L., Abboud, K. A. & Krause Bauer, J. A. (1997). *Acta Cryst.* C53, 707–710.